Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(8): 7311-7319, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252721

RESUMO

The development of bioactive polymer nanofiber sheets based on eco-friendly components is required to meet the needs of various medical applications as well as to preserve the environment. This study aimed to fabricate biohybrid nanofibers based on water-soluble polymers and aqueous extract of myrrh. The myrrh extract was incorporated into poly(vinyl alcohol)/tragacanth gum nanofiber mats (myrrh@PVA/TG) by the green electrospinning technique. Various characteristics of the prepared fibers such as morphology, fiber diameter distribution, crystallinity, and thermal stability were studied. The results confirmed that the morphology of biohybrid nanofibers was uniform without beads and tragacanth gum plays an important role in controlling the average diameter of fibers and the crystallinity. The antibacterial properties of the developed biohybrid nanofibers were investigated against common pathogens of Gram-positive and Gram-negative bacteria by the standard disc diffusion method. A significant antibacterial activity was observed toward bacterial strains after incorporation of aqueous myrrh extract into nanofibers, which increased on increasing the extract ratio. Due to their eco-friendly components and significant antibacterial activity, the prepared biohybrid nanofibers will open new avenues toward incorporating aqueous herbal extracts into degradable polymer fibers for use in many antibacterial applications.

2.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830442

RESUMO

Herein, we report the green synthesis of silver nanoparticles (OE-Ag NPs) by ecofriendly green processes using biological molecules of Olea europaea leaf extract. Green synthesized OE-Ag NPs were successfully characterized using different spectroscopic techniques. Antibacterial activity of OE-Ag NPs was assessed against four different bacteriological strains using the dilution serial method. The cytotoxic potential was determined against MCF-7 carcinoma cells using MTT assay in terms of cell viability percentage. Antioxidant properties were evaluated in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. Biocompatibility was further examined by incubating the synthesized NPs with hMSC cells for 24 h. The results were demonstrated that synthesized OE-Ag NPs presented excellent log10 reduction in the growth of all the tested bacterial strains, which as statistically equivalent (p > 0.05) to the standard antibiotic drug. Moreover, they also demonstrated excellent cytotoxic efficacy against the MCF-7 carcinoma cells compared to plant lead extract and Com-Ag NPs. Green synthesized OE-Ag NPs appeared more biocompatible to hMSC and 293T cells compared to Com-Ag NPs. Excellent biological results of the OE-Ag NPs might be attributed to the synergetic effect of NPs' properties and the adsorbed secondary metabolites of plant leaf extract. Hence, this study suggests that synthesized OE-Ag NPs can be a potential contender for their various biological and nutraceutical applications. Moreover, this study will open a new avenue to produce biocompatible nanoparticles with additional biological functionalities from the plants.


Assuntos
Química Verde , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Olea/química , Extratos Vegetais/química , Prata/química
3.
Acta Trop ; 171: 213-219, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28427958

RESUMO

Dengue virus (DENV) has emerged as a major economic concern in developing countries, with 2.5 billion people believed to be at risk. Vascular endothelial cells (ECs) lining the circulatory system from heart to end vessels perform crucial functions in the human body, by aiding gas exchange in lungs, gaseous, nutritional and its waste exchange in all tissues, including the blood brain barrier, filtration of fluid in the glomeruli, neutrophil recruitment, hormone trafficking, as well as maintenance of blood vessel tone and hemostasis. These functions can be deregulated during DENV infection. In this study, BALB/c mice infected with DENV serotype 2 were analyzed histologically for changes in major blood vessels in response to DENV infection. In the uninfected mouse model, blood vessels showed normal architecture with intact endothelial monolayer, tunica media, and tunica adventitia. In the infected mouse model, DENV distorted the endothelium lining and disturbed the smooth muscle, elastic laminae and their supporting tissues causing vascular structural disarrangement. This may explain the severe pathological illness in DENV-infected individuals. The overall DENV-induced damages on the endothelial and it's supporting tissues and the dysregulated immune reactions initiated by the host were discussed.


Assuntos
Vírus da Dengue/classificação , Dengue/patologia , Dengue/virologia , Células Endoteliais/patologia , Animais , Células Endoteliais/virologia , Camundongos , Camundongos Endogâmicos BALB C , Sorogrupo
4.
Saudi J Biol Sci ; 23(2): 211-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26981002

RESUMO

Mangrove sediments were collected from major mangrove stands on the Red Sea Coast of Saudi Arabia. Forty five isolates belonging to 12 genera were purified and five isolates as well as their consortium were found to be able to grow in association with petroleum oil as sole carbon source under in vitro conditions. The isolated strains were identified based on internal transcribed spacer (ITS) rDNA sequence analysis. The fungal strains with the greatest potentiality to degrade diesel oil, without developing antagonistic activity, were identified as Alternaria alternata, Aspergillus terreus, Cladosporium sphaerospermum, Eupenicillium hirayamae and Paecilomyces variotii. As compared to the controls, these fungi accumulated significantly higher biomass, produced extracellular enzymes and liberated larger volumes of CO2. These observations with GC-MS data confirm that these isolates displayed rapid diesel oil bioremoval and when used together as a consortium, there was no antagonistic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...